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Nonequilibrium steady states in an open system connecting two reservoirs of platelike colloidal particles are
investigated by means of a recently proposed phenomenological dynamic density functional theory �M. Bier
and R. van Roij, Phys. Rev. E 76, 021405 �2007��. The platelike colloidal particles are approximated within the
Zwanzig model of restricted orientations, which exhibits an isotropic-nematic bulk phase transition. Inhomo-
geneities of the local chemical potential generate a diffusion current which relaxes to a nonvanishing value if
the two reservoirs coupled to the system sustain different chemical potentials. The relaxation process of initial
states towards the steady state turns out to comprise two regimes: a smoothening of initial steplike structures
followed by an ultimate relaxation of the slowest diffusive mode. The position of a nonequilibrium interface
and the particle current of steady states depend nontrivially on the structure of the reservoirs due to the
coupling between translational and orientational degrees of freedom of the fluid.
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I. INTRODUCTION

Complex fluids of platelike colloidal particles, e.g., clay
suspensions, have been investigated to quite an extent in re-
cent years. The scientific interest largely stems from the
enormous range of phenomena found in these systems such
as flocculation, glass transitions, gelation, aging, and even
liquid crystal phase transitions �1–13� due to the interplay of
translational and orientational degrees of freedom of the con-
stituting particles. Whereas the liquid crystal properties of
fluids of platelike colloidal particles have been addressed in
some theoretical studies devoted to homogeneous as well as
inhomogeneous equilibrium systems �14–26�, not many in-
vestigations of the nonequilibrium behavior have been
performed.

In a recent publication the authors proposed a phenom-
enological dynamic density functional theory �DDFT� in or-
der to describe the relaxation dynamics of fluids of platelike
colloidal particles under the influence of an external field
�27�. Relaxation into stable or metastable states, both char-
acterized by a homogeneous local chemical potential, has
been found depending on the initial state and the external
field. In the present contribution, applying the same DDFT
formalism, nonequilibrium steady states are investigated
which form within a channel connecting two particle reser-
voirs of different chemical potentials. As the local chemical
potential in the channel is expected to be spatially inhomo-
geneous DDFT can be considered as the natural formalism to
describe the fluid of platelike colloidal particles on a coarse-
grained level.

DDFT is an extension of equilibrium density functional
theory �DFT� �28–30� to nonequilibrium conditions by pro-
posing an equation of motion for the one-particle densities
�31�. The one-particle densities are assumed to describe the
�dynamical� state of the system completely. On the one hand,
the DDFT equations are similar to the traditional time-
dependent Landau-Ginzburg and Cahn-Hillard models of

critical dynamics, spinodal decomposition, and crystal
growth �32–37�. On the other hand, the DDFT equations
have been derived within the framework of �overdamped�
Langevin dynamics, which is considered a reasonable de-
scription for dilute colloidal dispersions �38–41�. As the
number densities of the present work are close to the
isotropic-nematic two-phase region, which is located at small
densities for highly anisotropic particles, the applied DDFT,
which neglects hydrodynamic interactions, is expected to be
valid. The DDFT proposed in Ref. �27� is briefly summarized
in Sec. II.

The present work is restricted to fluids of platelike colloi-
dal particles, i.e., nonergodic states such as glasses or gels
are beyond the scope of this contribution. It is known that an
ergodic system described by a linear master equation relaxes
towards a unique steady state �42�. Although the formalism
applied here is not equivalent to a linear master equation, the
relaxation towards a unique steady state is nonetheless ex-
pected. This relaxation process is described in Sec. III in
terms of the number density, the orientational order, the local
chemical potential, and the particle current.

The final steady state is necessarily a nonequilibrium
steady state because the particle reservoirs coupled to the
system preclude equilibration of the system. This nonequi-
librium steady state exhibits a nonvanishing particle current
which is sustained by the chemical potential difference of the
particle reservoirs coupled to the system. Moreover, for suit-
ably chosen reservoir chemical potentials, the nonequilib-
rium steady state shows signs of bulk phase transitions.
These issues are discussed in Sec. IV.

Section V discusses the results found in Secs. III and IV
and closes with a short summary.

II. FORMALISM

A. Model fluid and system geometry

Consider a dispersion of monodisperse, hard, infinitely
thin, square colloidal particles within a three-dimensional
continuous solvent. The side length of the square particles is*m.bier@phys.uu.nl
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D. The orientations, described by the normal vector of the
square face, are restricted to directions parallel to the Carte-
sian axes �Zwanzig approximation �43��. A particle is called
an i particle if its orientation is along the i axis, i� �x ,y ,z�.

The system under consideration is a channel of length H
which connects two particle reservoirs. The channel is as-
sumed to be much wider than the particle size D such that
effects of the channel walls onto the colloidal fluid are neg-
ligible. Consequently, the fluid structure in the channel is
expected to vary only along the channel axis which is taken
as the z axis. The channel is located at the z axis interval
�0,H�. The local number density of i particles in the channel
at position z� �0,H� is denoted by �i�z�. The abbreviation
�ª ��x ,�y ,�z� is used later.

The structure of the model fluid is adequately described in
terms of the total density �ª�i�i and the order parameter
tensor Q �44� which, within Zwanzig models, is given by

Qii� =
1

2
�3

�i

�
− 1	�ii�, �1�

where �ii� is the Kronecker �.
The two-particle reservoirs are connected to the channel

at positions z=0 and z=H, respectively. They are assumed to
sustain equilibrium bulk structures �0 and �H corresponding
to the chemical potentials �0 and �H, respectively. The cou-
pling of the two reservoirs to the system amounts to the
Dirichlet-like boundary conditions ��z�0, t�=�0 and
��z�H , t�=�H.

B. Dynamic density functional theory

Within this work the dynamic density functional theory
�DDFT� proposed by the authors in Ref. �27� is applied. It
consists of the set of equations of motion for the one-particle
densities �i given by

��i�z,t�
�t

= � ��i�z,t�
�t

	
trans

+ � ��i�z,t�
�t

	
rot

, �2�

with the translational diffusion for fixed orientation
described by

� ��i�z,t�
�t

	
trans

ª −
�ji�z,���t���

�z
, �3�

where the particle currents along the z axis are

ji�z,���� ª − �i�i�z�
���i�z,����

�z
, �4�

and with the rotational diffusion at fixed position z described
by

� ��i�z,t�
�t

	
rot
ª −

1

6�
�
i�

��i�z,t� + �i��z,t��

	���i„z,���t��… − ��i�„z,���t��…� . �5�

���t�� marks a quantity as a functional of all density profiles
at time t. The driving force is due to inhomogeneities of the
local chemical potential

�i�z,���� ª 
 �F

��i�z�



�

, �6�

which derives from the free energy functional �45,46�

�F��� =� dz��
i

�i�z��ln„�i�z�
3
… − 1� + �„n� �z�…	 ,

�7�

where

�„n� �z�… = n0�z�ln�1 − n3�z�� +

�
q

n1q�z�n2q�z�

1 − n3�z�
+

�
q

n2q�z�

�1 − n3�z��2

�8�

describes the excess free energy density due to the hard-core
interaction. The weighted densities n��z�ª�i
�,i � �i�z� in-
volve the convolution ��� of the densities �i with the weight
functions


0,i�z� = a�z,Szi� , 
1x,i�z� = Sxia�z,Szi� ,


1y,i�z� = Syia�z,Szi� , 
1z,i�z� = b�z,Szi� ,


2x,i�z� = Syib�z,Szi� , 
2y,i�z� = Sxib�z,Szi� ,


2z,i�z� = SxiSyia�z,Szi� , 
3,i�z� = SxiSyib�z,Szi� , �9�

where the abbreviations a�z ,S�ª 1
2
��� S

2 +z�+�� S
2 −z�� and

b�z ,S�ª�� S
2 − 
z
� are used and Sqi� �0,D� denotes the ex-

tension of i particles along the q axis. The rotational relax-
ation time

� =
2

9
��D3, �10�

and the translational diffusion constants

�x,y =
D2

24�
, �z =

D2

36�
�11�

have been chosen �47�. In the above equations � is the in-
verse temperature, 
 denotes the thermal de Broglie wave-
length, and � is the viscosity of the solvent.

The described DDFT neglects hydrodynamic interactions
between the platelike particles. This is considered as a rea-
sonable approximation because of the small particle densities
in this study close to the bulk isotropic-nematic two-phase
coexistence region �48,49�.

An equilibrium state �eq fulfills the Euler-Lagrange
equation

�i�z,��eq�� = � , �12�

with the chemical potential �, i.e., equilibrium density pro-
files render the local chemical potential as a function of po-
sition �z� and orientation �i� into a constant. Therefore the
described DDFT is consistent with equilibrium DFT because
any equilibrium state �eq is stationary under the dynamics
represented by Eqs. �2�–�5�. Moreover, from Eqs. �4� and
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�12� one concludes a vanishing particle current for equilib-
rium states: j��eq�=0. For later convenience, the reduced
(local) chemical potential �*ª��−3 ln� 2


D
� is defined.

C. Bulk phase behavior and numerical method

The described model of fluids of platelike colloidal par-
ticles exhibits a first-order isotropic-nematic bulk phase tran-
sition at a reduced chemical potential �b

*=−1.3727. At this
binodal �b� the isotropic bulk phase of density �b

isoD3

=1.1440 coexists with the nematic bulk phase of density
�b

nemD3=1.5789 and scalar order parameter Sb
nem

=� 3
2 cos���2− 1

2
�=0.826 96, where � � denotes the thermal

average and � is the angle between the particle orientation
and the director �44�. Solutions of the DDFT equation speci-
fied in Sec. II B are calculated numerically by means of the
Euler-forward method with integration time steps of �

20 .

III. RELAXATION TOWARDS THE STEADY
STATE

In this section the relaxation process of an initial state
�� �t=0� towards the stationary state corresponding to the
boundary conditions exerted by the two reservoirs coupled to
the system at z=0 and z=H �see Sec. II� is studied. Here the
arbitrary case of the reservoir at z=0 sustaining the isotropic
bulk structure �0 corresponding to the reduced chemical po-
tential �0

*=−1.9 and the reservoir at z=H sustaining the

nematic bulk structure with the director parallel to the z axis
�H corresponding to �H

* =−1.1 is described in detail. More-
over, the initial state discussed here is chosen as

��z,t = 0� = ��H, z �
H

2
,

�0, z �
H

2
,� �13�

which approximates the equilibrium structure in the channel
in the presence of an impermeable membrane located at z
= H

2 . Here a detailed discussion of the case of the nematic
state �H with the director perpendicular to the z axis is not
necessary, because the temporal evolution turns out to be
qualitatively the same as for the case of parallel alignment.

The solutions of the DDFT equations �2�–�11� have also
been calculated for different initial states than in Eq.
�13�, such as the linear density profile ��0�z�H , t=0�
= �1− z

H
��0+ z

H�� H and the almost empty channel
��0�z�H , t=0��0, in order to verify that the final steady
state is independent of the initial state.

In Fig. 1 the temporal evolution of the initial state equa-
tion �13� for the channel length H=50D is displayed. The
total number density ��z , t� is shown in Fig. 1�a�. Up to time
t�104� the initial steplike density profile smoothens by dif-
fusion until the whole channel at z� �0,H� is affected. ��z , t�
for times t�105� does not undergo visible changes, i.e.,

t = 105τ
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t = 103τ
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t = 101τ
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FIG. 1. �a� Total number density ��z , t�, �b� nematic order paramter tensor component parallel to the z axis Qzz�z , t�, �c� reduced local
chemical potential �*�z , t�, and �d� total particle current j�z , t� of platelike colloidal particles of size D in a channel of length H=50D
connecting two particle reservoirs which sustain bulk equilibrium structures corresponding to the reduced chemical potentials �0

*=−1.9 at
z=0 and �H

* =−1.1 at z=H. The structure in the reservoir at z=0 is isotropic whereas the structure in the reservoir at z=H is nematic with
the director parallel to the z axis. The isotropic and the nematic binodals of the colloidal fluid in equilibrium are displayed for comparison.
The time is given in terms of the rotational relaxation time �. No further changes are visible for times t�105�.
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from then on the steady state is �practically� attained. The
equilibrium bulk density values of the isotropic binodal �b

iso

and the nematic binodal �b
nem are shown in Fig. 1�a�, too. The

steady state is approximately linear below the isotropic and
above the nematic binodal densities. In the density range
between the binodals, corresponding to the bulk two-phase
coexistence region, a steep portion of the steady state density
profile is related to the isotropic-nematic bulk phase transi-
tion. It has been verified by solving the DDFT equations that
in the case of two reservoirs of both isotropic structure a
similar steep portion is absent.

Figure 1�b� displays the temporal evolution of the nematic
order parameter tensor component parallel to the z axis
Qzz�z , t�. Similar to the total number density profile ��z , t� in
Fig. 1�a�, a diffusive smoothening of the initially steplike
profile takes place at times t�104�, whereas the steady state
has been attained at times t�105�. Between the order param-
eter values at the isotropic binodal 0 and the nematic binodal
Sb

nem the order parameter profile increases rapidly as a func-
tion of position.

For times larger than the rotational relaxation time, t��,
the local chemical potentials �i

* for i particles are practically
independent of i. Hence it is useful to consider the reduced
chemical potential profile �*�z , t�ª 1

3�i�i
*�z , t�, which is de-

picted in Fig. 1�c�. Again a smoothening of the initial step-
like profile in the time range t�104� due to diffusion is
followed by a restructuring into the final steady state which
has been reached at times t�105�. The slope of the steady
state profile as a function of position z slightly decreases
upon increasing z.

In Fig. 1�d� the total particle current j�z , t�ª�i ji�z , t� is
displayed. At early times the current is localized near the
position z= H

2 of the discontinuity of the initial state equation
�13�. Because �0

*��H
* the current is negative. With time the

spatial current distribution j�z , t� broadens and ultimately be-
comes homogeneous in the steady state. Under the present
conditions �reservoir chemical potentials, nematic director
alignment, channel length� the steady state current
j�z , t=��D2�=−7.219	10−4 is attained.

In order to quantify the “distance” of a given state �� from
the steady state, which is characterized by a homogeneous
particle current, consider the nonstationarity parameter

���� ª max
z��0,H�

j�z,���� − min
z��0,H�

j�z,���� , �14�

which is a functional of the state �. Obviously �����0. The
nonstationarity parameter vanishes if and only if the current
is homogeneous, e.g., if �� is a steady state.

Figure 2 depicts the nonstationarity parameter ����t��
evaluated for the state ��t� evolved from the initial state
equation �13� as a function of time t for channel lengths H
=100D �solid line�, H=50D �dashed line�, and H=25D �dot-
ted line�. In Fig. 2�a� one identifies a power law behavior �
� t−1/2 within a time range �� t� t	�H�, where t	�H� de-
notes an �approximate� crossover time, which depends on the
channel length H. The exponent is a consequence of the dif-
fusive smoothening �see Fig. 1� of the initial steplike chemi-
cal potential profile: If d�t� denotes the “width” of the inter-

val in Fig. 1�c� where �*�z , t� deviates considerably from the
reservoir values one expects a diffusive power law d�t�
� t1/2 as long as d�t��H. Since the particle current j�z , t� is
determined by the gradient of the local chemical potential
�see Eq. �4��, which in the smoothened interval is approxi-

mately given by
�H

*−�0
*

d�t� , one finds ����t���d�t�−1� t−1/2. The

crossover time t	�H�, which marks the end of the diffusive
smoothening process, could be defined by d(t	�H�)=H, i.e.,
one expects, t	�H��H2. At times t� t	�H� an ultimate ex-
ponential decay of ����t�� is found �Fig. 2�b��. The decay
times �*�H� of this exponential decay are �*�100D�
=63260�, �*�50D�=15793�, and �*�25D�=3959� for the
reservoir configurations discussed in the present section.
These values are proportional to H2 and they are of the same
order of magnitude as H2

2�x,y,z
, the one-dimensional transla-

tional diffusion time which is expected to be related to the
ultimate relaxation time scale.

IV. PROPERTIES OF THE STEADY STATE

In the previous section one specific set of reservoir con-
figurations has been fixed arbitrarily in order to study general
features of the temporal relaxation towards the correspond-
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2
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FIG. 2. Nonstationarity parameter ����t��, defined in the main
text, of state ��t� at time t for channel lengths H=100D �solid line�,
H=50D �dashed line�, and H=25D �dotted line�. The time is given
in terms of the rotational relaxation time �. In the time range �
� t� t	�H� with t	�H��H2, diffusive smoothening of the initial
steplike state leads to a power law behavior �� t−1/2 �see �a��. At
times t� t	�H�, a crossover to an ultimately exponential decay of �
�see �b�� takes place. The time scale of this exponential decay is
proportional to H2.
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ing stationary state. Here only properties of stationary states
and their dependence on the reservoir configurations is stud-
ied. However, the investigation is restricted to cases with one
reservoir sustaining an isotropic structure �� 0 at z=0 and one
reservoir sustaining a nematic structure �� H at z=H. In con-
trast to the previous section both possible alignments of the
nematic director with respect to the z axis—parallel and
perpendicular—are considered explicitly. We focus on the
isotropic-nematic interface and on the magnitude of the par-
ticle current as functions of the boundary conditions set by
the reservoirs.

As a general qualitative feature, revealed in the previous
section, the stationary state varies rapidly with position if it
is “close” to the �equilibrium� bulk two-phase coexistence
region �see profiles t=105� in Figs. 1�a� and 1�b��. This fea-
ture is reminiscent of a free interface between an isotropic
and a nematic phase at equilibrium bulk coexistence. Here,
however, the steplike profiles are nonequilibrium structures;
we call them nonequilibrium interfaces. There are several
possibilities to describe the “position” zint of the nonequilib-
rium interface. Here the following three are considered:

��z�
int,t = �� ª

1

2
��b

iso + �b
nem� ,

�max
i

Qii��zQ
int,t = �� ª Sb

nem,

�*�z�
int,t = �� ª �b

*. �15�

The different definitions of the interface position zint are
displayed in Fig. 3 for a channel of length H=50D and for
different alignments of the nematic director of the reservoir
state �H. They are ordered as z�

int�z�
int�zQ

int with z�
int−z�

int

�0.1D. Moreover, zQ
int−z�

int�0.3D for parallel and zQ
int−z�

int

�0.6D for perpendicular alignment of the nematic director.
These differences compared to the channel length are small,
however, hence one concludes that the three definitions for
the interface position equation �15� are equally reasonable.

Figure 3�a� depicts the interface position zint as a function
of the density in the nematic reservoir �H with the density in
the isotropic reservoir fixed to �0D3=�b

isoD3−0.04. Upon in-
creasing the nematic reservoir density �H the nonequilibrium
interface is shifted towards the isotropic reservoir �z=0�.
Conversely, Fig. 3�b� displays the interface position zint as a
function of the isotropic reservoir density �0 where the nem-
atic reservoir density is fixed to �HD3=�b

nemD3+0.4. Under
these conditions, the nonequilibrium interface shifts towards
the nematic reservoir �z=H� upon decreasing the density of
the isotropic reservoir �0. Moreover, for given reservoir den-
sities, the nonequilibrium interface for parallel alignment of
the nematic director is located closer to the nematic reservoir
�z=H� than for perpendicular alignment.

The dependence of the total current of the stationary state
j�t=�� on the configurations of the reservoirs is displayed in
Fig. 4. In Fig. 4�a� the isotropic reservoir density is fixed to
�0D3=�b

isoD3−0.04, whereas in Fig. 4�b� the nematic reser-
voir density is fixed to �HD3=�b

nemD3+0.4. The main plots
exhibit j�t=�� as a function of the reservoir densities �H

�Fig. 4�a�� and �0 �Fig. 4�b��; the insets alternatively display
j�t=�� as a function of the chemical potential difference of
the reservoirs �H

* −�0
*. Since �H��0, or equivalently �H

*

��0
*, the total current is negative. The magnitude 
j�t=��


increases with �H−�0 and it is larger for perpendicular than
for parallel alignment of the nematic director. The latter ob-
servation is not surprising if one recalls �x,y ��z �Eq. �11��.
However, the two cases shown in Figs. 4�a� and 4�b� are
remarkably different in the sense that the current difference
between perpendicular and parallel alignment 
j��t=��

− 
j��t=��
 is almost constant upon fixing the nematic reser-
voir density �H and varying the isotropic reservoir density �0
�Fig. 4�b��, whereas this difference increases upon increasing
the nematic reservoir density �H and fixing the isotropic res-
ervoir density �0 �Fig. 4�a��. Finally, for the same reservoir
density difference �H−�0, the magnitude of the stationary
state current 
j�t=��
 in Fig. 4�b� where most of the channel
is filled with isotropic fluid is larger than in Fig. 4�a� where
the channel contains predominantly nematic fluid.

V. DISCUSSION AND SUMMARY

In the present work nonequilibrium steady states of a fluid
of platelike colloidal particles in a channel which connects
two reservoirs sustaining bulk structures of different chemi-
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FIG. 3. Position of the nonequilibrium isotropic-nematic inter-
face zint in a channel of length H=50D with the nematic director
aligned parallel and perpendicular to the z axis. The curves corre-
sponding to the interface postitions z�

int �solid line�, zQ
int �dashed

line�, and z�
int �dotted line� defined in the main text almost coincide.

In �a� the isotropic reservoir is fixed to ��0−�b
iso�D3=−0.04,

whereas in �b� the nematic reservoir is fixed to ��H−�b
nem�D3=0.4.
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cal potentials have been investigated. A typical platelet fluid
is sample A10P of Ref. �50�, which consists of an aqueous
dispersion �solvent viscosity �=8.9	10−4 Pa s� of sterically
stabilized gibbsite platelets of diameter D=165 nm. Accord-
ing to Eq. �10� the rotational relaxation time is given by �
�214 �s. The calculated translational diffusion coefficients
�see Eq. �11�� compare well with the measured ones of Ref.
�50�. The numerical results of Sec. III suggest that the fluid
in a channel of length H=50D�8.3 �m has definitely
reached the steady state within a time t=105��21 s. The
corresponding steady state current is 
j�t=��
D2=7.219
	10−4 /��3.4 s−1. In this work the channel width is as-
sumed to be much larger than the particle size such that
effects of the channel walls can be neglected. For a channel

width of 10 �m�61D, say, a steady state channel current of
approximately 12 400 platelets per second is found. As a
reservoir of volume 1�=0.001 m3 contains of the order of
1017 platelike particles, the reservoir density in an experi-
mental realization of the setting discussed here stays constant
over any conceivable experimental time scale.

It has been shown in Sec. III that the relaxation process of
the platelet fluid towards the steady state is purely diffusive.
It comprises a diffusive smoothening of the initial steplike
fluid structure until the complete channel is affected, which
takes a time proportional to H2, followed by a structural
relaxation corresponding to the slowest diffusion mode with
a relaxation time proportional to H2. The two different re-
gimes have been detected by a power law and an exponential
decay, respectively, of the nonstationarity parameter � �Eq.
�14��, which measures the inhomogeneity of the particle cur-
rent within the channel. In light of the rather complicated
nonlocal fluid model �Sec. II� involving translational as well
as orientational degrees of freedom, the clear identification
of the power law and exponential decay regimes of � as a
function of time suggests that these regimes might also be
easily found in real platelet fluids.

In summary, the present work studies the formation and
the structure of nonequilibrium steady states in fluids of
platelike colloidal particles in a channel by means of dy-
namic density functional theory. Localized rapid changes of
density �Fig. 1�a�� and order parameter tensor �Fig. 1�b��
profiles of nonequilibrium steady states are similar to free
interfaces. The local chemical potential profile interpolates
smoothly between the values sustained by reservoirs at the
ends of the channel �Fig. 1�c��. The broadening of the par-
ticle current distribution �Fig. 1�d�� suggests the introduction
of a parameter measuring the distance from the steady state.
The purely diffusive relaxation process towards the steady
state comprises two regimes: a smoothening of the initial
steplike structure followed by an ultimate relaxation of the
slowest diffusive mode �Fig. 2�. The position of a nonequi-
librium interface �Fig. 3� and the particle current �Fig. 4� of
steady states depend nontrivially on the structure of the res-
ervoirs due to the coupling between translational and orien-
tational degrees of freedom of the fluid.
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